首页期刊介绍征稿简则下载专区期刊征订电子期刊联系我们帮助English
 
鳗草根际溶磷微生物分离、筛选及其对鳗草生长的影响
Html全文阅读】 【文章下载
下载次数:197次
作者:张雪梅1  张秀梅1 2  李文涛1 
单位:1. 中国海洋大学, 海水养殖教育部重点实验室, 山东 青岛 266003;
2. 青岛海洋科学与技术试点国家实验室, 海洋渔业科学与食物产出过程功能实验室, 山东 青岛 266072
关键词:鳗草 溶磷菌 16S rDNA 盆栽实验 促生作用 
分类号:S931
出版年·卷·期(页码):2020·27·1(82-95)
摘要:
为明确鳗草(Zostera marina)根际溶磷微生物溶磷能力及其对鳗草生长的影响,采用选择性无磷培养基从鳗草根际土壤中分离获得4株具较高溶磷能力的菌株(P1、P2、P3和P4),从形态学、生理生化特征及16S rDNA等方面对菌株进行了鉴定,探讨了菌株的最适培养条件,研究了其对鳗草植株存活、生长、生理及根际土壤酶活力的影响。结果表明,菌株P1~P4分别为芽孢杆菌(Bacillus altitudinis P1)、桑肠杆菌(Enterobacter mori P2)、大肠埃希氏菌(Escherichia coli P3)和Cobetia marina P4;72 h菌株培养液中可溶性磷含量分别为116.98 mg/L、123.13 mg/L、130.21 mg/L和76.54 mg/L;最适培养温度分别为34.67℃、33.95℃、34.60℃和31.19℃;最适培养盐度分别为27.10、28.29、29.54和26.08;最适初始pH分别为8.26、7.92、8.17和8.21。鳗草室外盆栽实验证实,4个接菌处理组对鳗草植株的存活、生长生理及根际土壤酶活力等指标均有不同程度的提高或改善。其中菌株P2对鳗草生长的影响最为显著,单株新叶面积、地上及地下生产力最高,为(54.31±4.79)cm2、(3.58±0.36)mg/(shoot·d)及(0.28±0.04)mg/(shoot·d),是对照组的2.77、2.91和1.75倍;叶片中叶绿素a、叶绿素b、总叶绿素和类胡萝卜素4种光合色素含量分别为31.35 μg/cm2、12.57 μg/cm2、39.42 μg/cm2和6.21 μg/cm2,显著高于对照组(P<0.05)。除菌株P4处理组外,其余各处理组的碱性磷酸酶活力均显著高于对照组(P<0.05)。但脲酶含量与对照组无显著差异(P>0.05)。综合分析认为,桑肠杆菌(Enterobacter mori P2)具备进一步研制溶磷微生物肥料的潜力,在海草床生态系统恢复中可能具有较高的应用价值。研究结果为深入探究高效溶磷菌株功能与代谢调控及其在鳗草植株人工促繁中的作用奠定了基础。
Eelgrass (Zostera marina) beds, one of the most important coastal ecosystems, are highly ecologically and economically valuable. However, eelgrass beds have been reduced worldwide because of natural and anthropogenic causes. To restore the degraded eelgrass beds, numerous studies have been conducted and various techniques developed. Among them, eelgrass transplantation is the most widely used and intensively studied technology. Some studies have shown that appropriate artificial propagation methods can effectively promote the survival and growth of the transplants, and phosphate-solubilizing microorganisms not only provide phosphate for the growth of the plants, the metabolites also play a major role in promoting plant growth and controlling diseases. However, techniques for promoting the growth of transplanted eelgrass are still absent. Therefore, investigating phosphate-solubilizing bacteria within the eelgrass rhizosphere is necessary. In this study, the growth-promoting activities of the rhizobacteria of eelgrass were investigated, by isolating four phosphate-solubilizing bacteria (P1, P2, P3, and P4) from the rhizosphere sediments of eelgrass using an SRSM medium. Based on the morphological, physiological, and biochemical characteristics, and the sequence analysis of 16S rDNA, we identified P1 as Bacillus altitudinis, P2 as Enterobacter mori, P3 as Escherichia coli, and P4 as Cobetia marina. The optimal culture conditions and typical growth curves for the four rhizobium strains were established. The optimal temperatures for the growth of the four strains were 34.67℃, 33.95℃, 34.60℃, and 31.19℃, respectively. The optimal salinity for growth was 27.10, 28.29, 29.54, and 26.08, respectively. The optimal pH for growth was 8.26, 7.92, 8.17, and 8.21, respectively. A pot test was conducted to investigate the effects of the four phosphate-solubilizing bacteria strains on eelgrass growth. The results showed that the survival rate, growth, physiological status, and enzyme activity of the rhizosphere soil in the four inoculation treatments increased to some extent. Among the treatments P2 showed the best promoting effect, with the new leaf area, aboveground productivity, and belowground productivity being (54.31±4.79) cm2, (3.58±0.36) mg/(shoot·d), and (0.28±0.04) mg/(shoot·d), respectively. Additionally, the contents of chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids significantly increased in the P2 treatment with values of 31.35 μg/cm2, 12.57 μg/cm2, 39.42 μg/cm2, and 6.21 μg/cm2, respectively. Except for P4, the activity of alkaline phosphatase in all other inoculation treatments was significantly increased (P<0.05). However, no significant differences were observed in the soil urease activity between the inoculation and control treatments. A comprehensive analysis indicated that E. mori (the P2 strain) could be applied in the future development and application of microbial inoculants and seagrass phosphobacterial fertilizers, thereby benefitting the recovery of eelgrass beds in the future.
该文献标准引用格式:
ZHANG Xuemei, ZHANG Xiumei, LI Wentao.Isolation and characterization of phosphate-solubilizing bacteria in the rhizosphere of eelgrass Zostera marina and promotion effect on eelgrass growth[J].Journal of Fishery Sciences of China,2020,27(1):82-95.[张雪梅, 张秀梅, 李文涛.鳗草根际溶磷微生物分离、筛选及其对鳗草生长的影响[J].中国水产科学,2020,27(1):82-95.]
参考文献:
[1] Wang Q, Li W T, Zhang P D, et al. Isolation and characterization of nitrogen-fixing bacteria in the rhizosphere of Zostera marina and optimization of its culture conditions[J]. Journal of Fishery Sciences of China, 2017, 24(4):791-801.[王琦, 李文涛, 张沛东, 等. 鳗草根际固氮菌的分离鉴定及培养条件的筛选[J]. 中国水产科学, 2017, 24(4):791-801.]
[2] Liu B J. Foundational studies on resource investigation and ecological restoration of eelgrass in typical bays in Shandong[D]. Qingdao:Institution of Oceanology, Chinese Academy Sciences, 2012:163.[刘炳舰. 山东典型海湾大叶藻资源调查与生态恢复的基础研究[D]. 青岛:中国科学院海洋研究所, 2012:163.]
[3] Waycott M, Duarte C M, Carruthers T J B, et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(30):12377-12381.
[4] Evans S M, Sinclair E A, Poore A G B, et al. Assessing the effect of genetic diversity on the early establishment of the threatened seagrass Posidonia australis using a reciprocal-transplant experiment[J]. Restoration Ecology, 2018, 26(3):570-580.
[5] Bastyan G R, Cambridge M L. Transplantation as a method for restoring the seagrass Posidonia australis[J]. Estuarine, Coastal and Shelf Science, 2008, 79(2):289-299.
[6] Zhao J S, Zhang Q, Liu J, et al. Effects of copper enrichment on survival, growth and photosynthetic pigment of seedlings and young plants of the eelgrass Zostera marina[J]. Marine Biology Research, 2016, 12(7):695-705.
[7] Yang C J, Liu Y S, Liu J, et al. Assessment of the establishment success of Zostera marina (eelgrass) from seeds in natural waters:Implications for large-scale restoration[J]. Ecological Engineering, 2016, 92:1-9.
[8] Abhijith R, Vennila A, Purushothaman C S. Occurrence of phosphate-solubilizing bacteria in rhizospheric and pneumatophoric sediment of Avicennia marina[J]. International Journal of Fisheries and Aquatic Studies, 2017, 5(4):284-288.
[9] Wang X H, Wang C D, Sui J K, et al. Isolation and characterization of phosphofungi, and screening of their plant growth-promoting activities[J]. AMB Express, 2018, 8:63-75.
[10] Zhao L F, Xu Y J, Cao D J, et al. Screening, resistance, phylogeny and growth promoting of phosphorus solubilizing bacteria isolated from soybean root nodules[J]. Acta Ecologica Sinica, 2015, 35(13):4425-4435.[赵龙飞, 徐亚军, 曹冬建, 等. 溶磷性大豆根瘤内生菌的筛选、抗性及系统发育和促生[J]. 生态学报, 2015, 35(13):4425-4435.]
[11] Xie H, Pasternak J J, Glick B R. Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid[J]. Current Microbiology, 1996, 32(2):67-71.
[12] Field C, Behrenfeld M, Randerson J. Primary production of the biosphere:integrating terrestrial and oceanic components[J]. Science, 1998, 281(5374):237-240.
[13] Jiang Y F, Ling J, Dong J D, et al. The bacterial communities constitution and distribution in sediment of seagrass in Xincun Bay, South China Sea[J]. Journal of Biology, 2016, 33(6):38-42.[江玉凤, 凌娟, 董俊德, 等. 南海新村湾海草沉积物细菌群落组成及分布[J]. 生物学杂志, 2016, 33(6):38-42.]
[14] Ghosh U, Subhashini P, Dilipan E, et al. Isolation and characterization of phosphate-solubilizing bacteria from seagrass rhizosphere soil[J]. Journal of Ocean University of China, 2012, 11(1):86-92.
[15] Niu S N, Zhang P D, Liu J, et al. The effect of temperature on the survival, growth, photosynthesis, and respiration of young seedlings of eelgrass Zostera marina L.[J]. Aquaculture, 2012, 350-353:98-108.
[16] Huang X P, Jiang Z J, Fan H Q, et al. The nomenclature of the "algae" name of seagrasses in China[J]. Oceanologia et Limnologia Sinica, 2016, 47(1):290-294.[黄小平, 江志坚, 范航清, 等. 中国海草的"藻"名更改[J]. 海洋与湖沼, 2016, 47(1):290-294.]
[17] Vazquez P, Holguin G, Puente M E, et al. Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon[J]. Biology and Fertility of Soils, 2000, 30(5-6):460-468.
[18] Deng Z S, Zhao L F, Kong Z Y, et al. Diversity of endophytic bacteria within nodules of the Sphaerophysa salsula in different regions of Loess Plateau in China[J]. FEMS Microbiology Ecology, 2011, 76(3):463-475.
[19] Garrity G M, Bell J A, Lilburn T G. Taxonomic Outline of the Prokaryotes Bergey's Manual of Determinative Bacteriology[M]. New York:Springer, 2004.
[20] Wang W J, He H S, Guan Y, et al. Methodological comparison of chlorophyll and carotenoids contents of plant species measured by DMSO and acetone-extraction methods[J]. Bulletin of Botanical Research, 2009, 29(2):224-229.[王文杰, 贺海升, 关宇, 等. 丙酮和二甲基亚砜法测定植物叶绿素和类胡萝卜素的方法学比较[J]. 植物研究, 2009, 29(2):224-229.]
[21] Zhang L Y. Effects of three factors on seed dormancy in eelgrass (Zostera marina L.) and their mechanisms[D]. Qingdao:Ocean University of China, 2014:82.[张凌宇. 三种因子对大叶藻种子休眠的影响及其作用机理初步研究[D]. 青岛:中国海洋大学, 2014:82.]
[22] Zhu Y L. Experimental method of bacteria growth curve determination[J]. Journal of Microbiology, 2016, 36(5):108-112.[朱艳蕾. 细菌生长曲线测定实验方法的研究[J]. 微生物学杂志, 2016, 36(5):108-112.]
[23] Fraser M W. Phosphorus availability and microbial driven decomposition in oligotrophic seagrass sediments[D]. Crawley:The University of Western Australia, 2016:161.
[24] Li L. Study on screening of phosphate-solubilizing bacteria from root zone soil of ginseng under forest and promoting effect on ginseng growth[D]. Beijing:Chinese Academy of Agricultural Sciences, 2017:55.[李乐. 林下山参根区土壤溶磷菌的筛选及对人参生长作用的研究[D]. 北京:中国农业科学院, 2017:55.]
[25] Zhang J, Wang P C, Fang L, et al. Isolation and characterization of phosphate-solubilizing bacteria from mushroom residues and their effect on tomato plant growth promotion[J]. Polish Journal of Microbiology, 2017, 66(1):57-65.
[26] Bakhshandeh E, Pirdashti H, Lendeh K S. Phosphate and potassium-solubilizing bacteria effect on the growth of rice[J]. Ecological Engineering, 2017, 103:164-169.
[27] Teymouri M, Akhtari J, Karkhane M, et al. Assessment of phosphate solubilization activity of Rhizobacteria in mangrove forest[J]. Biocatalysis and Agricultural Biotechnology, 2016, 5:168-172.
[28] Paul D, Sinha S N. Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga, India[J]. Annals of Agrarian Science, 2017, 15(1):130-136.
[29] Liu M, Liu X, Cheng B S, et al. Selection and evaluation of phosphate-solubilizing bacteria from grapevine rhizospheres for use as biofertilizers[J]. Spanish Journal of Agricultural Research, 2016, 14(4):e1106.
[30] Chinheya C C, Yobo K S, Laing M D. Biological control of the rootknot nematode, Meloidogyne javanica (Chitwood) using Bacillus isolates, on soybean[J]. Biological Control, 2017, 109:37-41.
[31] Joe M M, Devaraj S, Benson A, et al. Isolation of phosphate solubilizing endophytic bacteria from Phyllanthus amarus Schum & Thonn:Evaluation of plant growth promotion and antioxidant activity under salt stress[J]. Journal of Applied Research on Medicinal and Aromatic Plants, 2016, 3(2):71-77.
[32] Leite H A C, Silva A B, Gomes F P, et al. Bacillus subtilis and Enterobacter cloacae endophytes from healthy Theobroma cacao L. trees can systemically colonize seedlings and promote growth[J]. Applied Microbiology and Biotechnology, 2013, 97(6):2639-2651.
[33] Huang Q B, Zhang Y, Liu F Y, et al. Colonization dynamics of Bacillus cereus B3-7 on wheat roots and control efficiency against sharp eyespot of wheat[J]. Acta Ecologica Sinica, 2014, 34(10):2559-2566.[黄秋斌, 张颖, 刘凤英, 等. 蜡样芽孢杆菌B3-7在大田小麦根部的定殖动态及其对小麦纹枯病的防治效果[J]. 生态学报, 2014, 34(10):2559-2566.]
[34] Bai W J, Hu R R, Zhang J E, et al. Effects of phosphate-solubilizing bacteria on growth and phosphorus uptake of corn seedling[J]. Ecological Science, 2014, 33(3):401-407.[白文娟, 胡蓉蓉, 章家恩, 等. 溶磷菌对玉米苗期生长和磷素吸收的影响[J]. 生态科学, 2014, 33(3):401-407.]
[35] Ryu R J, Patten C L. Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by TyrR in Enterobacter cloacae UW5[J]. Journal of Bacteriology, 2008, 190(21):7200-7208.
[36] Shah S, Li J P, Moffatt B A, et al. Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria[J]. Canadian Journal of Microbiology, 1998, 44(9):833-843.
[37] Collavino M M, Sansberro P A, Mroginski L A, et al. Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth[J]. Biology and Fertility of Soils, 2010, 46(7):727-738.
[38] Taurian T, Anzuay M S, Angelini J G, et al. Phosphate-solubilizing peanut associated bacteria:Screening for plant growth-promoting activities[J]. Plant and Soil, 2010, 329(1-2):421-431.
[39] Fernández L A, Zalba P, Gómez M A, et al. Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions[J]. Biology and Fertility of Soils, 2007, 43(6):805-809.
[40] Mittal S K, Goel S. BOD exertion and OD600 measurements in presence of heavy metal ions using microbes from dairy wastewater as a seed[J]. Journal of Water Resource and Protection, 2010, 2(5):478-488.
[41] Wang D, Feng J, Zheng Z Y, et al. Characteristic comparison of two neutral proteases used for soy sauce fermentation[J]. Journal of Food Science and Biotechnology, 2012, 31(5):479-485.[王栋, 冯杰, 郑志永, 等. 酱油发酵用2种米曲霉中性蛋白酶的酶学性质比较[J]. 食品与生物技术学报, 2012, 31(5):479-485.]
[42] Rezaei M N, Dornez E, Jacobs P, et al. Harvesting yeast (Saccharomyces cerevisiae) at different physiological phases significantly affects its functionality in bread dough fermentation[J]. Food Microbiology, 2014, 39:108-115.
[43] Chen Y F. Osmosis for the influence of bacteria[J]. Journal of Taiyuan Normal University (Natural Science Edition), 2012, 11(1):136-139.[陈燕飞. 渗透压对细菌的影响[J]. 太原师范学院学报(自然科学版), 2012, 11(1):136-139.]
[44] Wang T, Kong L Y, Jiao J G, et al. Screeing of phosphate-solubilizing bacteria in red soil and their acting mechanisms[J]. Acta Pedologica Sinica, 2014, 51(2):373-380.[王同, 孔令雅, 焦加国, 等. 红壤溶磷菌的筛选及溶磷机制[J]. 土壤学报, 2014, 51(2):373-380.]
[45] Yi Y. Screening of phosphorus-solubilizing strain and its phosphate dissolving mechanism[D]. Dalian:Dalian University of Technology, 2011:56.[伊鋆. 高效解磷细菌的筛选及解磷机理的研究[D]. 大连:大连理工大学, 2011:56.]
服务与反馈:
Html全文阅读】【文章下载】【发表评论】【查看评论】【加入收藏
提示:查看此文需要支付$0.00
关于我们  |  联系我们  |  期刊介绍  |   在线留言
Copyright  ©  2009 中国水产科学杂志
京ICP备09074735号-7
京公网安备1101060260001号