首页期刊介绍征稿简则下载专区期刊征订电子期刊联系我们帮助English
 
全同胞家系中生长差异翘嘴鳜肌肉转录组分析
Html全文阅读】 【文章下载
下载次数:201次
作者:曾爽  刘宣歌  王鹏飞  胥鹏  曾雷  周磊  唐琴冬  陈挚  李桂峰 
单位:中山大学生命科学学院, 水生经济动物研究所, 广东省水生经济动物良种繁育重点实验室, 有害生物控制与资源利用国家重点实验室, 广东 广州 510006
关键词:翘嘴鳜 转录组 体重差异 差异表达基因 
分类号:S917
出版年·卷·期(页码):2020·27·1(53-61)
摘要:
翘嘴鳜(Siniperca chuatsi)是中国重要的经济水产养殖品种,对翘嘴鳜基因表达模式进行研究有助于筛选优势个体,培育生长特性优良的品种。为了解体重明显差异翘嘴鳜个体的差异基因表达信息,为翘嘴鳜培育提供基因指导,本研究从同一家系中挑选体重明显差异的3月龄翘嘴鳜(Siniperca chuatsi)个体进行肌肉转录组测序,研究不同体型个体间基因表达模式差异。结果显示,来自同一家系的翘嘴鳜个体在相同养殖条件下仍出现明显体重差异,养殖3个月后,极大个体(overweight)平均体重可达到极小个体(underweight)的4倍。分别对极大个体和极小个体的肌肉组织进行转录组测序,共获得73353个非重复序列基因(unigenes),通过基因表达量比较共获得8942个差异基因,对差异表达基因进行定义发现,GHR2IGFR14ebpMhcMlc、Troponin等基因在极小个体中具有更高的表达水平。通过KEGG通路富集显示,蛋白质生成、蛋白质消化、RNA转运通路富集了大量差异表达基因。本研究发现体重差异明显的翘嘴鳜个体具有不同基因表达模式,转录组测序获得了大量差异表达基因信息,为翘嘴鳜生长研究提供了丰富的基因资源。
Siniperca chuatsi is an important species in the Chinese economic aquiculture industry. Therefore, it is imperative for us to study the growth regulatory mechanisms of S. chuatsi, to help improve the growth trait and cultivate new varieties with higher growth rates. To learn more about the molecular mechanisms behind the growth of S. chuatsi, the muscle transcriptomes of fish with different weights were sequenced. Despite being cultivated under the same conditions, the S. chuatsi from full-sib families showed differences in the growth traits. After three months, 5 overweight and 5 underweight individuals were selected. The weight of the overweight group was 4 times heavier than the that of the underweight group. Muscle transcriptome sequencing was conducted to determine the differences in the gene expression patterns between the overweight and underweight groups. In all, 73353 unigenes were obtained with an average size of 703 bp. Then, 39005 unigenes were annotated by searching against NR, COG, Swissprot, and KEGG. After RPKM comparison, 8942 differentially expressed genes (DEGs) were confirmed, which were mainly found in the underweight group. GHR2, IGFR1, 4ebp, Mhc, Mlc, and Troponin have a higher gene expression in the underweight group. According to the KEGG pathway, many different expression genes are enriched in pathways concerning protein processing in the endoplasmic reticulum, ubiquitin-mediated proteolysis, and RNA transport. The expression trends of genes relating to protein synthesis and muscle fiber synthesis appear to be consistent. In general, the study showed that S. chuatsi with different growing characteristics have different transcriptome expression patterns. The underweight fish are smaller in size and present higher gene expression activities. This data provides rich genetic resources for studies on the growth regulation of S. chuatsi.
该文献标准引用格式:
ZENG Shuang, LIU Xuange, WANG Pengfei, XU Peng, ZENG Lei, ZHOU Lei, TANG Qindong, CHEN Zhi, LI Guifeng.Muscle transcriptome of Siniperca chuatsi with different weights from a full-sib family[J].Journal of Fishery Sciences of China,2020,27(1):53-61.[曾爽, 刘宣歌, 王鹏飞, 胥鹏, 曾雷, 周磊, 唐琴冬, 陈挚, 李桂峰.全同胞家系中生长差异翘嘴鳜肌肉转录组分析[J].中国水产科学,2020,27(1):53-61.]
参考文献:
[1] Li M F. Research progress on biology of mandarin fish[J]. Modern Fisheries Information, 2010, 25(7):16-21.[李明锋. 鳜鱼生物学研究进展[J]. 现代渔业信息, 2010, 25(7):16-21.]
[2] Wang P F, Zeng S, Xu P, et al. Two HSP90 genes in mandarin fish Siniperca chuatsi:Identification, characterization and their specific expression profiles during embryogenesis and under stresses[J]. Fish Physiology and Biochemistry, 2016, 42(4):1123-1136.
[3] Lu X, Gu Y M, Hou X C, et al. Molecular characterization, tissue distribution, and expression regulation from fasting and re-feeding of two growth hormone receptors in mandarin fish Siniperca chuatsi[J]. Fisheries Science, 2016, 82(1):155-169.
[4] Wang H F, Sun J J, Lu X, et al. Identification of insulin-like growth factor I gene polymorphisms using high-resolution melting and its effect on growth traits in sinipercid species[J]. Fisheries Science, 2013, 79(3):439-446.
[5] Zhu X, Li Y L, Chen D X, et al. Selection of reference genes for MicroRNA quantitative expression analysis in Chinese perch, Siniperca chuatsi[J]. International Journal of Molecular Sciences, 2015, 16(12):8310-8323.
[6] Wang Z, Gerstein M, Snyder M. RNA-Seq:a revolutionary tool for transcriptomics[J]. Nature Reviews Genetics, 2009, 10(1):57-63.
[7] Wang R J, Sun L Y, Bao L S, et al. Bulk segregant RNA-seq reveals expression and positional candidate genes and allele-specific expression for disease resistance against enteric septicemia of catfish[J]. BMC Genomics, 2013, 14:929.
[8] Sun F Y, Liu S K, Gao X Y, et al. Male-biased genes in catfish as revealed by RNA-Seq analysis of the testis transcriptome[J]. PLoS ONE, 2013, 8(7):e68452.
[9] Jeukens J, Renaut S, St-Cyr J, et al. The transcriptomics of sympatric dwarf and normal lake whitefish (Coregonus clupeaformis spp., Salmonidae) divergence as revealed by next-generation sequencing[J]. Molecular Ecology, 2010, 19(24):5389-5403.
[10] Dutta H. Growth in fishes[J]. Gerontology, 1994, 40(2-4):97-112.
[11] Liu P P, Chen X H, Zhong L Q, et al. Comparison of growth performance of different families of yellow catfish (Pelteobagrus fulvidraco)[J]. Journal of Nanjing Normal University (Natural Science Edition), 2013, 36(1):90-93.[刘朋朋, 陈校辉, 钟立强, 等. 黄颡鱼不同家系生长性能的比较[J]. 南京师大学报(自然科学版), 2013, 36(1):90-93.]
[12] Wang X A, Ma A J, Lei J L, et al. Comparison of the growing performance of different families of turbot (Scophthalmus maximus L.)[J]. Marine Sciences, 2011, 35(4):1-8.[王新安, 马爱军, 雷霁霖, 等. 大菱鲆不同家系生长性能的比较[J]. 海洋科学, 2011, 35(4):1-8.]
[13] Kocmarek A L, Ferguson M M, Danzmann R G. Differential gene expression in small and large rainbow trout derived from two seasonal spawning groups[J]. BMC Genomics, 2014, 15:57.
[14] Wang B, Tian Y Y, Sun C F, et al. Analysis of microRNA transcriptome and identification of growth related miRNA of Siniperca chuatsi[J]. Genomics and Applied Biology, 2017, 36(2):603-613.[王博, 田园园, 孙成飞, 等. 翘嘴鳜microRNA转录组分析及生长相关miRNA鉴定[J]. 基因组学与应用生物学, 2017, 36(2):603-613.]
[15] Fuentes E N, Valdés J A, Molina A, et al. Regulation of skeletal muscle growth in fish by the growth hormone-Insulin-like growth factor system[J]. General and Comparative Endocrinology, 2013, 192:136-148.
[16] Patterson S E, Mook L B, Devoto S H. Growth in the larval zebrafish pectoral fin and trunk musculature[J]. Developmental Dynamics, 2008, 237(2):307-315.
[17] Shi Y, He M X. Differential gene expression identified by RNA-Seq and qPCR in two sizes of pearl oyster (Pinctada fucata)[J]. Gene, 2014, 538(2):313-322.
[18] Dai X Y, Zhang W, Zhuo Z J, et al. Neuroendocrine regulation of somatic growth in fishes[J]. Science China Life Sciences, 2015, 58(2):137-147.
[19] Fuentes E N, Zuloaga R, Valdes J A, et al. Skeletal muscle plasticity induced by seasonal acclimatization involves IGF1 signaling:implications in ribosomal biogenesis and protein synthesis[J]. Comparative Biochemistry and Physiology Part B:Biochemistry & Molecular Biology, 2014, 176:48-57.
[20] Pierce A L, Fox B K, Davis L K, et al. Prolactin receptor, growth hormone receptor, and putative somatolactin receptor in Mozambique tilapia:Tissue specific expression and differential regulation by salinity and fasting[J]. General and Comparative Endocrinology, 2007, 154(1-3):31-40.
[21] Edens A, Talamantes F. Alternative processing of growth hormone receptor transcripts[J]. Endocrine Reviews, 1998, 19(5):559-582.
[22] Sun Y. Transcriptomic studies on the growth superiorities in a grouper hybrid (Epinephelus fuscogutatus ♀)×(Epinephelus lanceolatus ♂)[D]. Guangzhou:Sun Yat-sen University, 2016.[孙颖. 棕点石斑鱼(♀)×鞍带石斑鱼(♂)杂交F1代生长优势的转录组学研究[D]. 广州:中山大学, 2016.]
[23] Li X L. Screening, cloning, identifying and function analyzing of genes involved in body weight regular in abdominal muscles of white shrimp[D]. Yangling:Northwest A&F University, 2011.[李喜莲. 凡纳滨对虾肌肉组织中体重调控相关基因的筛选、克隆鉴定及功能研究[D]. 杨凌:西北农林科技大学, 2011.]
[24] Rechsteiner M C. Ubiquitin-mediated proteolysis:An ideal pathway for systems biology analysis[C]//Proceedings of the Conference on the Advances in Systems Biology. Boston:Springer, 2004:49-59.
[25] Aedo J E, Maldonado J, Aballai V, et al. mRNA-seq reveals skeletal muscle atrophy in response to handling stress in a marine teleost, the red cusk-eel (Genypterus chilensis)[J]. BMC Genomics, 2015, 16:1024.
服务与反馈:
Html全文阅读】【文章下载】【发表评论】【查看评论】【加入收藏
提示:查看此文需要支付$0.00
关于我们  |  联系我们  |  期刊介绍  |   在线留言
Copyright  ©  2009 中国水产科学杂志
京ICP备09074735号-7
京公网安备1101060260001号